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Summary—In steady magnetohydrodynamic flows past obstacles an important para-

meter is the "Alf‘én number" in, defined as the ratio of stream speed to the speed of

Alfven waves. To illustrate the significance of this parameter, the particular category

of flow is considered in which the undisturbed velocity and magnetic-field vectors far

from the obstacle are parallel or anti-parallel, i.e. "aligned-fields" flow. For such flows

the change from m>l (super-Alfvénic) to  m<1  (sub-Alfvénic) is especially profound.

Contrasts between super- and sub-Alfvénic flows are described in terms of the fol-

low ing categories of sub-Alf‘énic phenomena: (1) upstream wakes, (2) upstream-inclined

waxes, and (3) elliptic supersonic and hyperbolic subsonic flows; negative lift of airfoils

at positive incidence. These phenomcna are discussed with a view toward explaining their

origins. It is concluded that none violates simple physical principles, but that the lift

produced in elliptic sub-Alfvénic regimes cannot be predicted with confidence until the

analog of the Kutta-Joukowski condition is understood.

Finally, an attempt is made to assess the probability of laboratory observations

of these phenomena. It is concluded that values of the magnetic Reynolds number can

be realized that will permit these effects to be studied before they are attenuated by

diffusion.

INTRODUCTION

IN studies of steady flow of electrically conducting fluids, a dimension-
less parameter of great significance in determining the character of the
flow is the ratio of the magnetic pressure to the dynamic pressure,

112/8.7_ ,ni -

This ratio of pressures

A = 4:712 (2)

is the propagation speed of small magnetohydrodynamic waves, the so-




called Alfvén waves. Thus m is a ratio quite analogous to the Mach number;

i.e. the ratio of fluid speed to the speed of certain small disturbances.
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eq:2/2

is also the square of a ratio of speeds, since

(1)
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We propose to call this ratio, m= UM, the Alfvén number, althoup,11
some other writers seem to prefer the name Alfvén Mach number.

In view of this analogy, it is not surprising to an aerodynamicist that
the Alfvén number plays an important role in determining the character
of magnetohydrodynamic flow and that profound differences in character
are predicted between flows where m < 1 and those where m >1. These
predicted differences are most striking, perhaps, in flows of conducting
fluids past solid obstacles, i. e. stream flows, in which the magnetic field
as well as the velocity field, is supposed to be uniform at large distances
from the body. In such cases the disturbances created by an obstacle tend
to propagate relative to the fluid as Alfvén waves along the magnetic
lines, and changes of the Alfvén number can change significantly the
direction of this resultant propagation.

In particular, several investigators(1-14, 24) have studied the special case
in which the magnetic and velocity fields are not only both uniform at
infinity but are also parallel (or anti-parallel) there; this is usually called
"aligned fields". Changes of flow character of particular interest in these
flows occur for a velocity change from super-Alfvénic  (m> 1) to sub-
Alfvénic  (m <  1). These contrasts are the subject of the present paper.

In the literature of this field we can find at least three striking contrasts
between sub- and super-Alfvénic aligned flows. In naming and describing
them we naturally emphasize the phenomena of sub-Alfvénic flow, since
the category of super-Alfvénic flows includes the regime of conventional
fluid mechanics at the limit m oo.

1. Upstream Wakes and Reversed Boundary Layers

Greenspan and Carrier"), Hasimoto", "), Lary"), Imai112), Gour-
dine" 14), Yosinobu(2", and others have noted that steady incompressible
magnetohydrodynamic flows rather generally involve wake-like pheno-
mena extending outward from obstacles, and that these may, at sub-
Alfvénic speeds, extend upstream*. In fluids of non-zero viscosity and
electrical resistance there appear to be two wakes, one extending upstream

and the other downstream. Surprisingly, however, in the flow of a perfect
conductor (infinite conductivity), the downstream wake disappears and
the upstream remains, in sub-Alfvénic flow. By means of an elegant proof,

* It seems to us that the term "wake" is used too freely by some of these auth-
ors1,,, 12, 15).Except in the special case of aligned fields, the diffusion phenomena
that they consider do not represent diffusion along streamlines and therefore should
be called "diffuse waves" rather than "wakes". Moreover, it seems to have been over-
looked that a true wake, i.e. diffusion along streamlines, still occurs, in addition to the
phenomena discussed. In the aligned-field case discussed here, the true wake coincides
with one family of diffuse waves.
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Hasimoto has show n(2) that the steady, sub-Alfvénic, aligned-fields flow
of a viscous perfect conductor about any obstacle with two-dimensional
or axial symmetry is related to the conventional viscous flow (at ni =

about the same obstacle by a simple transformation in which the velocity
vector is multiplied by a negative constant. Thus the boundary layer in-
creases in thickness from the rear stagnation point, separatcs, and culmi-
nates in a wake extending upstream from the nose (Fig. 1).

Hoc,
.   • ••••••

—

FIG. 1. Upstream wake and reversed boundary-layer growth.

At the opposite limit, moreover, i.e. when viscosity vanishes but elec-
trical conductivity is finite, the downstream wake again disappears"'  S'

11, 13,14, 24), and only the upstream wake remains. This may be the more
interesting of the two limiting cases, for real conducting fluids do, in fact,
have relatively small viscosity and large electrical resistance. The signi-
ficant dimensionless parameter in this comparison is the ratio of magnetic
Reynolds number R to true Reynolds number Re, which is the "magnetic
Prandtl number—,

Pr„, =  4.7rav (3)

As the name would imply, Prm is a material property. For liquid metals
it has values of about 10 7, while for ionized gases it varies with density
and temperature and can be estimated by means of kinetic theory. Putting
y approximately equal to 0., we have Pr. 4aaa2. The conductivity
of air at about 5400 K and 0.015 times standard density is about 1 mho/cm23;
hence Prm at these conditions is about 10-6.

Thus, an appropriate limiting case as a model a real liquid or gaseous
conductor is the case Pr. —+O. In this limit the two wakes can be identified
unambiguously as a viscous wake whose thickness is 0(Re-1/2) and an
inviscid wake whose thickness is O(R ;112 ) , i.e. much thicker (8. 13' ").

The former always extends rearward, while the latter extends upstream
at sub-Alfvénic speeds.

Many of these remarks apply also to the boundary layer. For fluids
of small Prm we have identified (5. 10) the phenomenon of an inviscid boun-
dary layer, at least for bodies of sufficient thickness, and have noted that
it is underlain by a viscous sublayer, Pr„, times as thick. This model

42'
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seems to be in good aereement with what has been said above about wakes,

and there are indications that this inviscid layer does increase in thickness

from rear to front at sub-Alfvénic speeds, as would seem to be required.

Upstream-inclined Waves

It has already been mentioned above that wave-like disturbances occur
in flows of conducting fluids, i.e. the Alfvén waves. In the general case
of stream flow past an obstacle, such waves are produced, their orien-
tation given simply by their propagation relative to the fluid at the Alfvén
speed, along the maenetic lines. It is clear that various combinations
of field direction and Alfvén number can result in some of these waves
being inclined upstream.

The special case of aligned fields, however, is a degenerate one in this
regard, for which recognizable Alfvén waves are not produced in an in-
compressible flow but are replaced by the wake-like phenomena described
above. In a compressible fluid, on the other hand, Alfvén waves and con-

entional sound waves are replaces by families of combined acousti-
maenetohydrodynamic wax es in a rather complex way. Here again up-
stream-inclined waves—in fact, two families of them—may appear for
certain field inclinations, Alfvén numbers, and Mach number(6,7,6), and
now this cateizory includes aligned-field flows at certain sub-Alfvénic
speeds.

We therefore list this phenomenon, the occurrence of upstream-inclined
acousti-mhd waves in steady aligned-field compressible flow, as another
contrast between sub- and super-Alfvénic flow. In real fluids of small
viscosity and finite conductivity, such waves are damped, i.e. diffused,
but their orientations are substantially the same.

Elliptic supersonic and luperbolic subsonic flows; negative lift

Finally, continuing our description of aligned-field compressible flow,
we find a regime of supersonic flow, at Alfvén numbers less than 1, where
wax e phenomena disappear completely and the flow field is described
by elliptic equations, as in conventional subsonic aerodynamics. On the
other hand, again at sub-Alfvénic speeds, there is a regime of subsonic
flow where the equations become hyperbolic and their solutions repre-
sent families of waves. Finally, in certain sub-Alfvénic regimes the surface
pressures on obstacles are reversed in sign and the lift of airfoils at posi-
tive incidence might be expected to be negative(6'7'9').

Having listed and briefly described these three different (but not neces-
sarily unrelated) categories of sub-Alfvénic phenomena, we now proceed
to a more detailed study of their origins to show that they do not violate
physical principles.
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ANALYSIS

In this section we shall attempt to explain the above-mentioned sub-

Alfvénic phenomena, considering them in the same order and under

the same headings.

1. Upstream Wakes and Reversed Boundary Layers

The momentum equation for an incompressible fluid

q Vq 1 Vp = yV2q1- 1H • VH— 1- V//21
o 4.7,2 t2I

(4)

where the second right-hand term is the electromagnetic body force per

unit mass, j x F1/0, expressed with the aid of Ampére's Law, 4.7j cur111.

The second essential equation is Ohm's Law"'3),

j 0-IE q H (5)

or, after taking the curl of both sides,

1
V2H = q VH H • Vq (6)

It is usually convenient to combine the two gradient terms in Eq. (4)

by defining the "total pressure" P ==p -//2/87r; Eq. (4) can then be writ-
ten in the from

1
I.V2q - q • Vq— H • VH

I
VP (7)

4.70 f)

At this point it is clear, in Eqs. (6) and (7) that viscous diffusion of

momentum and diffusion of magnetic field are involved; i.e. that r and
1/4:ra are diffusion coefficients.

If we concentrate our attention on wake phenomena it is permissible to

consider large distances from obstacles and to make appropriate approx-

imations, particularly to small perturbations of the uniform velocity

and magnetic fields. Furthermore, the usual boundary-layer or wake

approximations, for a fluid of small viscosity lead to the conclusion that

dPlOy 0 and hence that in studies of wakes at large distances from

obstacles the term e 1( ) Plax) can be neglected in the x component of

Eq. (7).

The results of these approximations are the following simplified equa-

tions:

(M' dh,
1,," = 1-1„,

4:to dx

1h
= -V2 h H

4:ro-
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Equation (8) states that the acceleration of a fluid particle is given by
the usual diffusion of momentum by viscosity plus a term arising from
the body force. Equation (9) states that the rate of increase of field strength
in a fluid particle is due to the usual diffusion of the field plus the field
intensification due to stretching of the fluid particle.

VELOCITY PROFILES u(y)

WAKE

• ••  

F
WAKE

ORRIN&

Flo. 2. Diagrams showing effects of viscous diffusion in conventional wake (abo% e )

and in sub-Alfvénic wake (below).

Now, to understand how a wake can extend upstream it is enough to
consider the two limiting cases Prm= oo and Pr , 0 ; i.e. a — oo and

— O. Moreover, it is particularly interesting to study these cases, since
for them the downstream wake disappears !

(a) Prmz- =

From Eq. (9),

Ohdu'
U =

dxdx
(10)

In fact, this is the case q - x: H ;  the flow and field vectors are parallel and
proportional. But this makes the left-hand and second right-hand terms
of Eq. (8) proportional to one another; the body force is proportional
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to the acceleration. The constant of proportionality is just in-2, so that
at sub-Alfvénic speed the body force dominates and the particle behaves
as if it had negative mass.

Under these conditions it seems clear that the wake must extend up-
stream, or at least that it must diminish in width in the flow direction.
A wake or boundary layer always involves outward diffusion of momen-
tum-deficient particles (drag) near its edges, and this must accelerate
rather than decelerate the fluid; thus the wake, if it extends upstream,
diminishes in width toward the body (Fig. 2). Since the wake originates
at the body, downstream it must collapse into a jet of zero thickness and
disappear.

(b)  Prm—  0(v = 0)

From Eq. (8):

Ou' ah„
U  = - 	

ax  4.7r, dx

But this makes the left-hand and second right-hand terms of Eq. (9) pro-
portional; the field intensifkcation due to stretching of the fluid is pro-
portional to the total rate of increase of field strength  Udh,dx.  The con-
stant of proportionality is again in-  2, so that at sub-Alfvénic speeds the
"stretching" term dominates. Thcn magnetic-field diffusion results in an
increase rather than a decrease of field strength in the  U  direction.

This reversed effect of diffusion is quite analogous to what we found
i n (a) for momentum diffusion; the wake in steady flow must therefore
lie upstream of the body.

So far, we have discussed steady flows. It seems clear how the wake
builds up in front of the body when the motion begins; namely by up-
stream Alfvén-wave propagation. To be sure, there is also downstream
Alfvén-wave propagation, but the arguments presented above show that
no downstream wake can result in steady flow, and they also describe
the mechanism by which the transient disturbances downstream are
eliminated as the steady state is approached.

Before leaving this subject let us consider briefly the effect of an
upstream wake on the momentum balance of the problem. Fixing oneself
in a coordinate system fixed to the body (Fig. 3), it would be easy to
conclude that, since more momentum leaves the control zone through
BW than enters through AA', the drag must be negative. This, of course.
ignores the body force; but the conclusion seems even more attractive
when one determines the sign of the body forces, for they are directed
upstream (see Fig. 3). The resolution of this dilemma comes from the
fact that the pressure along AA' is not uniform. Since the total pressure



664 W. R. SEARS and E. L. RESLER, JR.

LI
A

BODY
FORC E

u (y) /

A' B'

FIG. 3. Diagram showing control zone used for momentum balance in flow

involving upstream wake.

P is uniform, the velocity deficiency along AA' is accompanied by ele-
vated pressures, which provide the necessary force in the downstream

direction.

2. Upstream-inclined Waves

The wave patterns of compressible magnetohydrodynamic flow are
best understood by use of what is called the "Friedrichs Diagram-1 '7'

(Fig. 4). This is a diagram showing the self-perpetuating shape of a dis-
turbance (pulse) produced at a point in a compressible ideal conductor

otherwise at rest. It has a special orientation with respect to the magnetic-
field vector H. It is analogous to the circular disturbance pattern of
ordinary acoustics but differs from it in an essential way, for it consists

not only of a wave front (fast wave) but of certain slower discontinuities
(crests) which lie within the disturbed region (slow waves). (There may

also be intermediate waves, which are not involved in the present dis-
cussion.)

Just as the Mach waves of ordinary supersonic flow can be explained

as the envelope of circular disturbances produced by a moving body, the
standing acousti-mhd waves are the envelopes of fast or slow waves of

the Friedrichs pulses made by the moving body. These waves can be
inclined upstream if the body's speed is such that an upstrcam envelope

is appropriate. Such a case, with aligned fields at infinity, is sketched

in Fig. 5; it belongs to a category of subsonic, sub-Alfvénic flows which
will be specified below. Upstream-inclined waves are possible only if
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Smaller


oF A, a

1,4202

---- SLOW WAVE

B'

Larger

oF A,a
FAST WAVE

FIG. 4.  "Friedrichs Diagram" of self-similar pulse shape due to point distur-




bances in perfectly conducting inviscid compressible fluid otherwise at rest.

A  is the Alfvén wave speed and a the sound speed.

BODY MOVING FROM


RIGHT TO LEFT

ENVELOPE

FIG. 5. Sketch showing how a body mo‘ing from right to left forms upstream-




inclined envelopes of the "slow waves" of the Friedrichs diagram.
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the speed of the body lies between the propaaation speeds of points A'
and B' on the pulse diagram (Fig. 4).

It might be noted that the differential equation for steady flow in this
regime is, for plane flow(7 10),

where

(' //(.. 21)/PxxVyy 


2142 m2


Ai 2H- m2-1

and 1/(-.2 1 in the particular regime represented in Fig. 5. Thus the
eeneral solution of Eq. (12) is

v(x, f (1:- 13.0+ g By) (14)

where B2 III --1 and the arbitrary functions f and g represent waves
of inclination + 1/B.

The choice between the waves in a given circumstance, as always, must
be made on physical grounds; i.e. one must choose outgoing, rather than
incoming waves, if one is treating unconfined flow. This selection can be
facilitated, however, by a general principle that makes use of the prop-
erties of the steady-flow equations and does not require such detailed
knowledee about the time-dependent solution as has been available
above. The principle can be stated as follows: In any regime where
the slope of characteristics ("Mach waves") increases with increasing
flow speed, the physically correct family of waves is upstream-inclined,
and vice versa. A study of Eq. (13) will reveal that this does indeed
describe the regime m < 1, l  m2 < M2 < in the present problem.

This principle follows from what has already been said about standing
av es (characteristics) as envelopes of disturbances propagating from

successive points of the flight path. Increased flight speed can only steepen
the waves if the envelopes are formed ahead of the body, as in Fia. 5.
Conversely, if increased flight speed reduces the w ave inclination, the
envelopes must lie behind the body as in conventional supersonic aero-
dynamics.

In this light it becomes clear that upstream-inclined waves in steady-
flow problems are not just a consequence of an upstream-propagation
mechanism, such as Alfvén waves, for such a mechanism always exists
at subcritical stream speeds. Rather, they are the result of a peculiar
pulse-propagation shape that is capable of forming envelopes ahead of
a body. It seems possible, therefore, that upstream-inclined waves may
occur in the physical situations involving modification of conventional
aerodynamics due to anisotropic propagation mechanisms.
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Before leaving the subject of upstream-inclined waves, let us consider

two simple examples of flow and pressure patterns in this regime. In
F12. 6 is shown plane flow about a double-wedge profile for infinite con-

ductivity and vanishing viscosity. The sketch is drawn according to
small-perturbation theory; if nonlinear terms were retained the foremost

FIG. 6. Wave and streamline pattern for plane flow past a double-wedge profile at
M in 0.77,  '7

and rearmost waves would be shock waves and the central waves would
be replaced by expansion fans. Magnetohydrodynamic shock waves have
been treated by several authors"' 21) and will not be discussed here,
except to emphasize that the upstream-inclined acousti-mhd waves
discussed in this section do have their counterpart in upstream-inclined

shocks, in this same regime of sub-Alfvénic, subsonic flow.
In further explanation of Fig. 6 it should also be emphasized that the

curre nt sheets at the body surface are an infinite-conductivity approx-
imation to the high-current-density magnetic boundary layers that actually

2E
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exist there in fluids of finite conductivity, and w hich were mentioned
in our Introduction. The vanishing of magnetic field w ithin the body
is an inevitable consequence of infinite conductivity, assuming only that
the body is not a perfect conductor. In a fluid of finite conductivity there
remains a residual field within the body, of magnitude  0(11,0R").  Thus
the magnetic boundary layer, which replaces the current sheet, makes
the transition from field strength 0(1-103) outside to  0(1103R,,,112) inside.
It will be seen (Fig. 6) that in this regime the change of pressure across
this thin layer is large.

As a second example, Fig. 7 shows flow of a perfect conductor (y = 5,3)

around a corner in this regime. The flow is quite analogous to Prandtl-

Meyer flow, except that the waves are upstream-inclined. It is also remark-
able that although ik goes from oo to 1 in this Figure, the corresponding
velocities, pressures, densities, and temperatures are everywhere finite. The
case sketched represents expansion through the maximum angle for this
isentrope; further turning in the same direction beyond  B  would be an
elliptical process, in spite of its supersonic speed, as will be mentioned
again below. Thus additional turning, either upstream of  A  or downstream
of  B  would render the problem a mixed hyperbolic-elliptic one.

3. Elliptic Supersonic and Hyperbolic Subsonic Floivs; Negative Lift

Turning now to the third category of sub-Alfvénic phenomena, w

refer once again to the Friedrichs Diagram (Fig. 4). If a body mo‘es

parallel or anti-parallel to H at a speed between the propagation speeds
of points  B'  and  C',  it can form no standing waves, and the correspondina

steady-flow pattern is elliptical, even though this speed may be super-
sonic. Referring to Eqs. (12) and (13) above, we find that this is the
range  m < I, 1 < M < Ala  provided the ratio of disturbance speeds.
Ala,  is greater than I. Here ')/C < 1.

This is surely a most remarkable regime of flow, where the streamline
pattern is described by elliptical equations, which can be obtained fro m

an incompressible irrotational flow pattern by a simple Prandtl-Glauert

transformation as suggested by Eq. (12), but where the flow is supersonic!
In the approximation of a perfect conductor the flow is isentropic. Thus
the variation of flow speed with stream-tube area is the reverse of sub-
sonic flow: the speed is high where the streamline spacing is wide, and
vice versa. One result is that the lift of an airfoil at positive incidence
is negative, and this conclusion is not altered by consideration of the
surface-current forces, for they augment the surface pressures in this
region. This conclusion, of course, is based on the presumption that the
incompressible flow pattern including circulation can be carried over
to the compressible flow in the Prandtl-Glauert transformation. Since
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the circulation is actually the result of some complex viscous phenomena
at the trailing edge it may be a gross oversimplification to assume that
it transforms this way. Thus the conclusion involving negative lift must
be regarded as speculative until experimental evidence is available.

The reaime of hyperbolic subsonic flow has already been discussed.
It might be mentioned that its nature is just the opposite of the elliptic
supersonic regime just described; namely, it involves streamline patterns
(e.g. Figs. 6 and 7) resembling supersonic flow, but the velocity and

Tr1=-1rn= 00

A

FIG. 7. Simple-wave flow about a corner in the hyperbolic, subsonic, sub-Alfvénic

regime. For the case shown, the upstream conditions (A) are M=- 0.565,  in —  0.83,

and the downstream conditions (B) are  M  —  Pc" -- 1. The angle
turned through is about 18°. — 5/3.

pressure variation within these stream tubes is typically subsonic. It is
clear in Figs. 6 and 7 how this is accomplished: the appearance of up-
stream-inclined waves yields streamlines whose spacing is appropriate
for subsonic flow, i.e. wider where speeds are low and narrower where
speeds are high. Although the forces on the surface-current layers in this
regime oppose normal lift (cf. Fig. 6), they do not dominate the situation,
and this is not a regime o f reversed lift.

Finally, however, there is a third area of sub-Alfvénic flow, namely
the ranae of flow speeds less than the speed of point  A'  in Fig. 4. This is
a second region of elliptic flow patterns; viz. (See Eqs. (12) and (13))
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- 1, ni2+ M2< 1,  and c)/(2 < O. This too, is a remarkable flow regime.
for it is related to incompressible irrotational flow by means of a Prandtl-
Glauert transformation to a compressed, rather than stretched, plane.
Here the surface-current forces dominate the fluid pressures, and net
pressure on the body surface is reversed in sign as a result. Thus this is
a second region of negative lift, although the reason is not quite the same
as in the elliptic supersonic regime discussed above. But once again the
conclusion of negative lift is based on the presumption that flow with
circulation is related uniquely to an incompressible irrotational floNN
in the transformation. This presumption seems particularly dangerous
in the present case since this is precisely one of the regimes of upstream-
wake flow described above.

Recognizing that in a real conducting fluid there v‘ould be an up-
stream wake, largely inviscid, and a thinner downstream wake, larael  
viscous, is one safe in assuming that conventional viscous processes at

the trailing edge control the circulation? Should the inviscid wake domi-
nate—which seems possible in view of its greater thickness—the "Kutta-
Joukowski condition" might well be shifted to the leading edge"). Circu-
lation would then be reversed in sign, for given incidence, and the th.st

result, with surface currents (or their real-fluid counterparts), would be
positive lift at positive incidence. Again one must defer to experimental
observations to resolve this question, unless the whole process of transient
flow and separation can be calculated for a fluid of real viscosity and
conductivity.

These speculations regarding the Kutta-Joukowski condition and cir-

culation in sub-Alfv énic flow are made more intriguing by a recent in-
vestigation by Ring(s) of unsteady magnetohydrodynamic flow past air-

foils. One of Ring's conclusions is that such flow is unstable, in the sense

that divergent oscillations of circulation can occur, unless the conven-
tional trailing-edge (Kutta-Joukowski) condition is discarded.

Finally, it might be pointed out that negative drag is never predicted
by the theories discussed here, in spite of the reversal of net surface

pressure in certain regimes, for these are always regimes of elliptic flo‘A
patterns where the pressure drag vanishes.

There remains, however, one more possibility to be discussed: w, hat
is the likelihood that all of the sub-Alfvénic phenomena predicted and
discussed here are simply results of having postulated the entire flov.
pattern incorrectly? At least one author (Stewartson(")) has suggested
that entirely different flow patterns exist, and has provided evidence to
support his view.

Stewartson believes that the flows described here, and in numerous
other papers referred to here, are incorrect by virtue of the familiar as-
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sumption of undisturbed flow far from an obstacle. He points out that

a different flow pattern may occur, in which the parallel magnetic field

is undisturbed, the fluid is at rest between parallel vortex sheets tangent to

the body at its top and bottom, and the fluid stream outside of these

vortex sheets is parallel and undisturbed. Moreover, by treating transient

flow in the limit of infinite conductivity and M in = 0, he has shown

that this is the ultimate flow pattern for large time.
Although the Stewartson flow undoubtedly satisfies the boundary

conditions of the problem (except the rejected condition at infinity), we

believe that it is a very special situation that pertains only to the limit

in —>O. At this limit the magnetic lines are infinitely rigid compared to

any inertia or pressure forces that the fluid can exert. Thus, when the
motion begins, the fluid is inevitably constrained to move only alone

the maenetic lines, and Stewartson flow results. It is difficult to see how

a similar pattern could result if  in  were increased appreciably, so that

fluid motion around the body could occur.

We note that there are other situations where a stabilizing body force

results in analogous flow-between-rigid-vortex-sheets in the limit of very

slow motion. These are flow due to motion of a body in (a) a rotating

liquid and (b) a highly stratified liquid in a gravitational field. Yet one

does not find these patterns approximated at higher speeds. Thus  we

expect that Stewartson flow will occur near  in = 0, for sufficiently large

R„„  but that the categories of flow discussed here will be observed in

a larger range of values of the Alfvén number. The resolution of this
problem stands as a most attractive problem for experimenters.

CONCLUSIONS

In the last section of this paper we propose to discuss briefly the
prospects of laboratory observation of the various sub-Alfvénic pheno-

mena described above.

There is, of course, no problem in making the Alfvén number  ni  as

small as desired, since this can be done either by reducing the flow speed

or increasing the field strength. What is more critical is to obtain simul-

taneously sub-Alfvénic values of  in  and large enough R. to bring out

these phenomena, most of which we have predicted for fluids of large

conductivity. To be more specific: at low values of R. the upstream

wake may be so diffuse as to be unrecognizable, and the same is true of

upstream-inclined waves. Moreover, since conventional Mach waves

surely appear in supersonic flow at small enough values of R., the disap-

pearance of waves in elliptic supersonic flow must be to some degree

a high-conductivity phenomenon. The question arises: what laboratory
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values of  Rm  are required to affect substantially the waves in this flow
regime?

To help answer these questions we have carried out the following
esti mates :

Upstream Wakes

Using the results of Lary") (equation 186) one can easily estimate the
perturbation velocity on the axis ahead of a slender body of revolution
with a forward-facing wake. In this case the velocity that would occur
without any magnetohydrodynamic interaction must be multiplied by

the factor (1
Rm

;  thus if  m =  an  Rm  of 4:x would be required
4.7W12

to obtain a disturbance five times as great as the disturbance that would
occur with no magnetohydrodynamic interaction at a distance of two
body lengths upstream of the nose. Such a difference in flow pattern
should be easily discernible.

Subsonic Hyperbolic Flow

In this regime of flow the magnetic Reynolds number necessary for
forward-facing waves generated at a wavy wall to propagate a wave
lerwth into the fluid away from the wall before the disturbance is
damped by a factor 1/e is given by the expression(25)

—2.7/cos  7-
R (15)

sin2T (1—m2)

where T is the angle the wave makes with the free stream (T < 90 in

this regime). Note that  Rm  is least when q = 90' but then the wave

coincides with an ordinary sonic wave front. For a wave swept forward

or T = 105, and  m = 1,  an  Rm  equal to 2.59 is required. In this
case the flow is only slightly subsonic, the Mach number being 0.987.

Supersonic Elliptic Flow

In this type flow the ordinary acoustic waves disappear as  Rm  increases
if in I. The disturbances carried along waves generated again by a
wavy wall, that ordinarily in the absence of magnetohydrodynamic effects
would extend to infinity, are damped to 17e of their wall value a wave-
length away from the wall at an Rm given by(251:

= 2m= tan T (16)

Therefore if again  m  and for if = 45, Rm
All of the  Rm  computed in the three instances can be achieved experi-

mentally in the laboratory. All of the sub-Alfvénic phenomena discussed
should be capable of experimental verification.
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LIST OF SYMBOLS

A  speed of Alfvén waves, 11/1/47-ceii„
speed of sound waves, (dp1c10:',isentropic
(jo 1)112

electric-field vector

./1g arbitrary functions (Eq. (14))
magnetic-field vector

11 scalar magnitude of H
11,, scalar magnitude of H at infinity

hx,h, perturbation components of the magnetic-field vector

electric-current density

reference length for Reynolds numbers

.1f free-stream Mach number, U/a
Ili  (See Eq. (13))

in Alfvén number,  LI/ A

total pressure, p+H2/8.7
Pr„, magnetic Prandtl number, 4:ra

static pressure

fluid-velocity vector

Re  Reynolds number, UL,Iv
R„, mametic Reynolds number, 4:rU Lq

free-stream flow speed

u', r' perturbation components of the fluid-velocity vector

x, y plane Cartesian coordinates
ratio of specific heats

mean free path of molecules

kinematic viscosity

mass density of fluid

electrical conductivity

perturbation stream function; total stream function = Uy±tp
semi-wedge angle in Fig. 6
wave angle
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